

Volta Flood and Drought Management

Introduction to Probabilistic Risk Assessment

Risk Definition

HAZARD

Risk Assessment methodologies

- 1. Historical analysis
- 2. Scenario analysis (The exercise of session 1)
 - geographical distribution of the severity of loss due to the occurrence of a postulated event (i.e., Scenario)
- 3. Probabilistic analysis
 - Risk is defined as the likelihood (i.e., probability) of sustaining a certain level of loss during a given time period.
 - Risk = Probability of an event occurring x impact of the event

Considers a large number of possible scenarios, their likelihood and associated impacts

Probabilistic Flood Risk Assessment

Risk Metrics

• Average Annual Loss (AAL) is the expected loss per year, averaged over many years.

• **Probable Maximum Loss** (PML) describes the loss that could be expected corresponding to a given likelihood, expressed in terms of annual probability of exceedance or its reciprocal, the return period.

Task 1:

AAL= is the expected loss per year, averaged over many years.

Suppose to have the time-series of the damages in two Region of the country

- Compute the Average Annual Loss, very likely events, medium likely and unlikely for the two time-series
- Derive 3 key messages and compare the results, what difference do you notice among the two time- series?
- Time: 15 min

Disaster Loss time series n. 1

VU

Disaster Loss time series n. 2

VU

TASK 1

Question 1: Extract the following information from the graph:

AAL: is the expected loss per year, averaged over many years

	Series 1	Series 2
AAL		
Most frequent/Very likely		
damage (once every 2-3 years)		
Frequent/Medium likely		
damage (once every 5-10		
years)		
Less frequent/unlikely damage		
(once every 20-30 years)		

Question 2: Observe the damage time series and derive 3 key messages and comment on the comparison between AAL of series 1 and series 2

1. Key message 1

2. Key message 2

3. Key message 3

AAL series 1 = 35,750 \$ AAL series 2 = 71,500 \$

	Loss		
Series 1		Series 2	
ery likely	\$ 5,000	\$ 10,000	
Likely	\$ 50,000	\$ 100,000	
Unlikely	\$ 500,000	\$ 1,000,000	

V

IVM Institute for Environmental Studies

Task 2:

(PML) describes the loss that could be expected corresponding to a given likelihood

Suppose to have the time-series of the damages in two Regions of the country

- Plot over the curve the expected losses and the likelihood for the two time-series
- Comment the results
- Time: 10 min

	Series 1	Series 2
AAL		
Most frequent/Very likely		
damage (once every 2-3 years)		
Frequent/Medium likely		
damage (once every 5-10		
years)		
Less frequent/unlikely damage		
(once every 20-30 years)		

TASK 2: PML: describes the loss which could be expected corresponding to a given likelihood for the 2 loss time series.

Probable Maximum Loss Curve

13

Probable Maximum Loss curve

- the likelihood of a \$US 100 million loss occurs, on average, once in a decade
 loss of \$US 1 billion
 - occurs is a very rare event.

VU

Conceptual Framework: key components

- 1. Weather "Generator"
- 2. Water Cycle simulation
- 3. Hazard Mapping
- 4. Exposure Mapping
- 5. Impact
 - Assessment

IVM Institute for Environmental Studies

Reading the risk profiles

• PML for People Affected

• AAL for People affected

CIMO R E S E A R C H FOUNDATION

